POLAR RECIPROCAL CONVEX BODIES

BY

H. GUGGENHEIMER[†]

ABSTRACT

The minimum of the product of the volume of a symmetric convex body K and the volume of the polar reciprocal body of K relative to the center of symmetry is attained for the cube and the *n*-dimensional crossbody. As a consequence, there is a sharp upper bound in Mahler's theorem on successive minima in the geometry of numbers. The difficulties involved in the determination of the minimum for unsymmetric K are discussed.

The product of the volumes of a convex body and its polar reciprocal with respect to an interior point is of importance in the geometry of numbers [6,8], Minkowski geometry [2,3], and differential equations [4].

Let \mathscr{K}_n denote the space of proper convex bodies (compact, convex sets with nonempty interiors) in euclidean *n*-space E^n with the Blaschke metric, and \mathscr{S}_n the space of symmetric, proper convex bodies. The complete spaces of the convex (respectively, symmetric convex) bodies are denoted by $\mathscr{K}_{\tilde{n}}$ and $\mathscr{S}_{\tilde{n}}$. For $K \in \mathscr{K}_n$, we denote by K^* the polar reciprocal of K for a point $* \in int K$, i.e., the body whose distance function for * is the support function of K for the origin *. The volume is denoted by V.

By theorems of Blaschke [1] and Santaló [9],

 $\max_{K \in \mathscr{K}_n} \min_{* \in intK} V(K) V(K^*) = \max_{K \in \mathscr{S}_n} \min_{* \in intK} V(K) V(K^*) = c_n^2,$

where c_n is the volume of the unit ball in *n*-space. Mahler [8,9] has shown

$$\min_{K \in \mathcal{K}} \min_{* \in \operatorname{int} K} V(K) V(K^*) = 27/4,$$

$$\min_{K \in \mathscr{G}_2} \min_{* \in \operatorname{int} K} V(K) V(K^*) = 8,$$

[†]Research partially supported by NSF Grant GP-27960.

Received January 15, 1972 and in revised form November 4, 1972

H. GUGGENHEIMER

the minima being realized, respectively, by the triangle and the parallelogram. In the note, we generalize Mahler's second result to *n*-space and prove

$$\min_{K \in \mathscr{G}_n} \min_{* \in \operatorname{int} K} V(K) V(K^*) = 4^n / n!,$$

the minimum being realized by the pair parallelotope-crossbody. The proof follows the general idea of the corresponding proof for locally convex curves with arbitrary winding number $\lceil 4 \rceil$.

As a consequence, Mahler's fundamental theorem on the successive minima of a symmetric convex body in the lattice of points of integer coordinates (e.g., [8] and [6, Chapter 2, Th. 5]) can be improved to

$$1 \leq \lambda_i \lambda_{n+1-i}^* \leq n!$$

where the upper limit is sharp and attained by the polar reciprocal pair parallelotope-crossbody.

The author is indebted to the referees for pointing out the lacunae in earlier versions of the paper and for suggesting the proof of Lemma 2 adopted here.

1. The method of proof of Lemma 1 follows an idea of Santaló [10].

LEMMA 1. The volume $V(K^*)$ is minimal as a function of $* \in int K$ if and only if * is the center of gravity $g(K^*)$ of K^* .

Since V(K) does not depend on *, the minimum of $f_*(K) = V(K)V(K^*)$ is obtained for $* = g(K^*)$.

Let $p(\omega)$ be the support function of K for unit vectors ω and dS the (n-1)-volume element of the unit sphere S^{n-1} . Then,

$$V(K^*) = \frac{1}{n} \int_{S^{n-1}} p^{-n}(\omega) dS(\omega).$$

A change of * by a vector ε induces a change of $p(\omega)$ to

$$\tilde{p}(\omega) = p(\omega) - \varepsilon \cdot \omega.$$

The volume of K^* is changed to

$$V_{\varepsilon} = V(K^*) + \int_{S^{n-1}} (\varepsilon \cdot \omega) p^{-n-1}(\omega) dS(\omega) + \frac{n+1}{2} \int_{S^{n-1}} (\varepsilon \cdot \omega)^2 p^{-n-2}(\omega) dS(\omega) + o(|\varepsilon|^2).$$

For $* \in int K$, $p(\omega) > 0$. The polar equation of the boundary of K^* for the origin

* is $r(\omega) = p^{-1}(\omega)$. It follows that K^* , $V(K_*)$ and $f_*(K)$ are continuous functions of K and *, for $* \in int K$. Since $f_*(K)$ and $V(K^*)$ tend to ∞ as * approaches the boundary of K, the infima of the functions in int K are also the infima on a compact subset of int K and are minima.

The point * is stationary for $V(K^*)$ if

$$\int_{S^{n-1}} (\varepsilon \cdot \omega) p^{-n-1}(\omega) dS(\omega) = 0 \text{ for all } \varepsilon,$$

and, since the second order term of V_{ε} is positive, the critical point is a unique minimum. The point * is stationary if and only if the moments of a homogeneous mass distribution throughout K^* vanish for all axes through *: the minimum occurs at the centroid of K^* .

The following geometric fact is an immediate consequence of the proof:

COROLLARY. 1. In the interior of any proper convex body K, there is a unique point * which is the center of gravity of the corresponding polar body K^* .

2. LEMMA 2. The function $f(K) = \min_{* \in intK} f_*(K)$ has a minimum both in \mathscr{K}_n and in \mathscr{S}_n .

The distance and support functions for the origin * are positive, continuous functions of $* \in \operatorname{int} K$. Hence, K^* is a continuous function of (K,*) on an appropriate subspace of $\mathscr{K}_n \times E^n$ and so are $V(K^*)$ and $f_*(K)$. By construction, the function f(K) is lower semicontinuous (in fact, because of $f(K) = f_{g(K^*)}(K)$, f(K) can be shown to be continuous).

There exists a sequence of proper convex bodies K_j such that

$$\lim f(K_j) = \inf_{K \in \mathscr{K}_n} f(K).$$

By a theorem of F. John [5 Th. III], any set M in E^n is contained in some ellipsoid, and a concentric and homothetic image in ratio 1/n of that ellipsoid is contained in conv M. This implies that any proper convex body in E^n has an affine image which contains the unit ball of a fixed origin and is contained in the spherical ball of radius n about that origin. Since both the centroid and f_* are affine invariants, f is affinely invariant and we may assume that the K_j contain the unit sphere S^{n-1} about the origin of the coordinates and are contained in $n S^{n-1}$. By the Blaschke convergence theorem, a subsequence of the K_j converges to a convex set K_0 which is bounded (contained in $n S^{n-1}$) and proper (containing S^{n-1}). Hence, $K_0 \in \mathcal{H}_n$ and $\lim f(K_j) = f(K_0)$ by the Weierstrass theorem in \mathcal{H}_{n} . H. GUGGENHEIMER

The same argument holds for symmetric bodies; by Lemma 1, $f(K) = f_c(K)$ for a symmetric body K of center c.

3. The following construction is the basis of the proof of the main theorem.

Let P be a simplicial polytope of vertices a_1, \dots, a_N . We put the origin at * and identify a_i and the vector $*a_i$. The star $S(a_i)$ of a vertex a_i is the union of all faces of P having a_i as a vertex. For an (n-1)-face F_j of $S(a_i)$, let f_j be the vector product of the vectors of the vertices $\neq a_i$ of F_j . (The vector product of n-1 vectors v_1, \dots, v_{n-1} in \mathbb{R}^n is the unique vector v for which

$$v \cdot x = \det(v_1, \cdots, v_{n-1}, x)$$

for an arbitrary vector x.) Then,

$$V(\operatorname{conv}(*, S(a_i)) = \frac{1}{n!}a_i \cdot \Sigma f_j, \qquad (F_j \in S(a_i))$$

if the sign of the f_j is derived from the positive orientation of the simplicial complex P derived from that of E^n .

Let P_i be the convex set which is the intersection of the closed halfspaces containing P defined by all (n-1)-faces of P that do not belong to $S(a_i)$. For a point x in the intersection of P_i and the support hyperplane π of P of equation

$$(x-a_i)\cdot \Sigma f_j = 0, \qquad (F_j \in \mathcal{S}(a_i))$$

we put

$$P' = \operatorname{conv}(a_1, \cdots, a_{i-1}, x, a_{i+1}, \cdots, a_N).$$

Then,

$$V(P) = V(P').$$

In fact, consider P as the union of $C = \operatorname{conv}(*, S(a_i))$ and a remainder set. The polytope P' is the union of the same remainder set and the convex closure C' of x and those (n - 1)-faces of C that do not contain a_i (i.e., the convex closure of x and the star of * in C). The condition on x assures that V(C) = V(C').

If Q is a crosspolytope of center * and Q' is obtained by replacing two vertices $a_i, -a_i$ by points x, -x according to our construction, then Q' is an affine image of Q in a linear map centered at * and $f_*(Q') = f_*(Q)$.

4. We are now able to prove the main result.

THEOREM. The minimum of f(K) in \mathcal{S}_n is attained for the crossbody.

We shall denote by a_i^* the face of the polytope P^* situated in the hyperplane

 a_i^* . For $P \in \mathscr{S}_n$, we must consider only the case in which * is the center. The following lemma is true for \mathscr{S}_n but not for \mathscr{K}_n .

LEMMA 3. For every symmetric, simplicial polytope, the central projection of the star of some vertex into the unit sphere of center * is contained in some closed hemisphere.

The lemma is true for the crossbody; in that case, the central projection of every star is a closed hemisphere.

For every other symmetric, simplicial polytope P, the star of some point a_i must contain more than 2(n-1) vertices a_j $(j \neq i)$. Since $S(a_j)$ and $S(-a_j)$ $= -S(a_j)$ cannot intersect in relatively interior points, some $S(a_j)$ must be contained in a closed hemisphere. In fact, $S(a_j)$ is in some closed wedge of angle $< \pi$ whose edge is the line $(a_i, -a_i)$, since otherwise, only 2(n-1) such wedges could be accomodated about the axis $(a_i, -a_i)$.

We assume now that the projection of $S(a_i)$ is contained in a closed hemisphere or that S(a) is in a closed halfspace H whose boundary contains *. By a linear transformation that preserves H, a_i can be mapped into the normal to the boundary of H. The outer normals to the faces of P^* adjacent to a_i^* all point into H. This means that all angles between a_i^* and any adjacent (n-1)-face are $\leq \pi/2$.

In the following, we shall discuss replacing a_i by x. It will be understood that at the same time, we will replace $-a_i$ by -x.

i) We assume first that some angles are $< \pi/2$. If $\pi^* \notin a_i$, any point x corresponding to a hyperplane x^* through π^* that separates * from a_i^* generates a P' with $V(P'^*) < V(P^*)$ since $P'^* \subset P^*$. By construction, P' is symmetric simplicial: f(P) is not minimal.

If $\pi^* \in a_i^*$, consider any x^* through π^* and the corresponding symmetric simplicial body P'^* , the intersection of the halfspaces containing * of x^* , $(-x)^*$, and the duals of the remaining vertices of P. If $V(P'^*) < V(P^*)$, f(P) is not minimal. Otherwise, let σ be the reflection in the hyperplane a_i^* . Since $\pi^* \in \sigma x^*$, we have $\sigma x \in \pi$, and σx will be admissable provided that the angle of a_i^* and x^* is sufficiently small. Let P'' be the body defined by σx and $-\sigma x$. Then,

$$\sigma((P^* \setminus P''^*) \cap H) \supset (P'^* \setminus P^*) \cap H,$$

$$\sigma((P^* \setminus P'^*) \cap H) \supset (P''^* \setminus P^*) \cap H.$$

In fact, the two sets involved in any of the inclusions intersect on a_i^* ; those of the first inclusion also intersect on x^* and those of the second inclusion on σx^* .

The sets at the right hand sides are also bounded by faces of P^* , the sets at the left hand sides by images under σ of these faces. The inclusions follow since the interior angles that are reflected are $\geq \pi/2$. By symmetry, similar inclusions hold for -H. Since not all angles are $\pi/2$, both inclusions cannot be equalities and $V(P'^*) \geq V(P^*)$ implies $V(P''^*) < V(P^*)$.

ii) If all angles are $\pi/2$, then P^* is a right prism and P the suspension of an (n-1)-dimensional symmetric, simplicial body Q with

$$V(P)V(P^*) = \frac{4}{n} V(Q)V(Q^*),$$

where Q^* is constructed in the boundary hyperplane of H. The previous arguments applied to Q will yield a polytope Q' with f(Q') < f(Q), unless Q is the (n-2)-fold, and P the (n-1)-fold suspension of a segment, i.e., unless P is a crosspolytope.

In all cases considered here, the number N' of vertices of P' is not greater than the number N of vertices of P. The process can be repeated unless P' is either a crosspolytope or is not simplicial.

Let P be a symmetric polytope that is not simplicial and that is not the union of conv S (a_i) and conv S $(-a_i)$ for all *i* (i.e., P is not a combinatorial cube.) We choose a pair of vertices $(a_i, -a_i)$ and replace them by (y, -y) where y is close to a_i on the ray $*a_i$ in the exterior of P'. Then S(y) is simplicial in the resulting polytope P'. The construction of Section 3 can be applied to P'. The maximal distance of x from y for which S(x) remains simplicial depends, by Section 3, on the geometry of $P'_i \cap -P'_i$ and also, in a term tending to zero in a continuous way for $y \to a_i$ on $*a_i$, on the position of π . This means that for y close to a_i , there exists $\delta > 0$ for which we may find an x such that for the corresponding P'' we have

$$f(P'') = f_*(P'') < f_*(P') - \delta.$$

In view of the continuity of V and *, y can be chosen so that $f_*(P') < f_*(P) + \delta/2$. Hence, f(P'') < f(P) and P'' can be assumed to be simplicial and to have the same number of vertices as P.

Starting from a given simplicial polytope P, we obtain a (possibly transfinite) sequence on which f is strictly decreasing and N is decreasing. Hence, the process must terminate in a crosspolytope Q (or its dual, the parallel body).

Since the simplicial polytopes are dense in all polytopes, there exists a sequence of simplicial polytopes P_j for which

$$\lim f(P_j) = \inf_{P \in \mathscr{S}_n} f(P).$$

By the preceding, $f(P_j) \ge f(Q)$. Hence, we obtain the assertion of the theorem. In addition, we have seen that the minimum of f(K) on the polytopes is attained only for crossbody-parallel body.

Let P be the metric space of affine equivalence classes of convex bodies in E^{n} [7]. Then we know that f induces a function f on P that has a unique minimum on the class of crossbodies for all classes of simplicial polytopes. Any convex body K can be approximated arbitrarily closely by simplicial polytopes. If K is not a polytope, the classes of its approximating simplicial polytopes cannot be arbitrarily close to the class of the crosspolytope in P and hence, the lower semicontinuous function f(K) cannot have a minimum for K. As a consequence, we have the complement to the theorem:

The minimum of f(K) in \mathcal{S}_n is attained only for crossbody and parallel body.

5. Finally, we discuss briefly the situation for \mathscr{K}_n . The natural conjecture here is that the minimum of f(K) takes place only for the simplex, the simplicial polytope of a minimal number of vertices. The dual of a simplex is a simplex and * = g(S) implies $* = g(S^*)$ for every simplex S.

The proof of Section 4 does not carry over since Lemma 3 does not hold. One therefore has to discuss separately the polytopes for which $* \in int \operatorname{conv} S(a_i)$ for all vertices a_i . One shows easily that for polytopes that are the convex closure of the star of one point, this can happen only for the simplex. If $P \neq \operatorname{conv} S(a_i)$ for all *i* and n = 3, then there exist vertices a_j , $a_k \in S(a_i)$ for which $S(a_i) \cap S(a_j)$ $\cap S(a_k)$ consists of at most two points. It follows without difficulty that for n = 3, the only polyhedra for which the proof of Section 4 cannot be imitated are the convex closures of three pairwise skew segments. In this case, f(K) can be computed explicitly by a lengthy determinant formula and might be shown to be not minimal. For n > 3, the morphology of the exceptional polytopes defies classification and a new approach must be found.

References

1. W. Blaschke, Über affine Geometrie VII: Neue Extremeigenschaften von Ellipse und Ellipsoid. Sitz. Ber Akad. Wiss. Leipz. Math. Nat. KI. 69 (1917), 306-318.

2. H. Guggenheimer, *The analytic geometry of the unsymmetric Minkowski plane*, Lecture Notes, University of Minnesota, Minneapolis 1967.

3. H. Guggenheimer, The analytic geometry of the Minkowski plane, I, A universal isoperimetric inequality, Abstract 642-197, Notices Amer. Math. Soc. 14 (1967), 121. 4. H. Guggenheimer, *Hill equations with coexisting periodic solutions*, J. of Differential Equations 5 (1969), 159-166.

5. F. John, *Extremum problems with inequalities as subsidiary conditions*, Courant Anniversary Volume, Interscience, New York, 1948, 187–204.

6. C. G. Lekkerkerker, Geometry of numbers, Wolters-Noordhoff, Groningen, 1969.

7. A. M. Macbeath, A compactness theorem for affine equivalence classes of convex regions, Canad. J. Math. 3 (1951), 54-61.

8. K. Mahler, Ein Übertragungsprinzip für konvexe Korper, Časopis Pest. Mat. Fyz. 68 (1939), 93-102.

9. K. Mahler, Ein Minimalproblem für konvexe Polygone, Mathematica (Zutphen) B 7 (1939), 118-127.

10. L. A. Santaló, Un invariante afin para los corpos convexos del espacio de n dimensiones, Portugal. Math. 8 (1949), 155-161.

POLYTECHNIC INSTITUTE OF BROOKLYN BROOKLYN, N.Y., U.S.A.