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ABSTRACT 

The minimum of the product of the volume of a symmetric convex body K 
and the volume of the polar reciprocal body of K relative to the center of 
symmetry is attained for the cube and the n-dimensional crossbody. As a 
consequence, there is a sharp upper bound in Mahler's theorem on successive 
minima in the geometry of numbers. The difficulties involved in the determina- 
tion of the minimum for unsymmetric K are discussed. 

The product  of  the volumes of a convex body and its polar  reciprocal with 

respect to an interior point is of  importance in the geometry of numbers [6, 8], 

Minkowski geometry [2, 3], and differential equations [4]. 

Let ~X:" n denote the space of proper  convex bodies (compact,  convex sets with 

nonempty interiors) in euclidean n-space E n with the Blaschke metric, and 5:  n the 

space of symmetric, proper convex bodies. The complete spaces of  the convex (res- 

pectively, symmetric convex) bodies are denoted by ~t~ and ~ .  For  K ~ n ,  

we denote by K* the polar reciprocal of K for a point �9 ~ int K, i.e., the body 

whose distance function for �9 is the support function of K for the origin , .  The 

volume is denoted by V. 

By theorems of Blaschke [1] and Santal6 [9], 

2 
max r ~ # m i n  ,~ i ntK V(K) V(K*) = maxK ~ s, min ,  ~ intK V(K) V(K*) ~. Cn, 

where cn is the volume of the unit ball in n-space. Mahler [8, 9] has shown 

mink ~ x:~min, ~ i,t KV(K)V(K*) = 27/4, 

minr~ s,~min, ~ int KV(K)V(K*) = 8, 
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the minima being realized, respectively, by the triangle and the parallelogram. 

In the note, we generalize Mahler's second result to n-space and prove 

mink ~ z min , ,  i,t rV(K)V(K*) = 4 ~ /n !, 

the minimum being realized by the pair parallelotope-crossbody. The proof 

follows the general idea of the corresponding proof for locally convex curves 

with arbitrary winding number [4]. 

As a consequence, Mahler's fundamental theorem on the successive minima 

of a symmetric convex body in the lattice of points of integer coordinates (e.g., 

[8] and [-6, Chapter 2, Th. 5]) can be improved to 

1 <2; t*  < n !  -~- i n +  l - i  ----~ 

where the upper limit is sharp and attained by the polar reciprocal pair paral- 

lelotope-crossbody. 

The author is indebted to the referees for pointing out the lacunae in earlier 

versions of the paper and for suggesting the proof of Lemma 2 adopted here. 

1. The method of proof of Lemma 1 follows an idea of Santal6 [-10]. 

LEMMA 1. The volume V (K*) is minimal as a function o f ,  Eint K if and 
only i f ,  is the center of gravity g (K*) of K*. 

Since V(K) does not depend on *, the minimum of f , ( K ) =  V(K)V(K*) is 

obtained for �9 = g (K*). 

Let p (09) be the support function of K for unit vectors co and dS the (n - 1)- 

volume element of the unit sphere S"-1. Then, 

1 t "  
V(K*) = n Js . - ,  p-"(co)dS(o~), 

A change of �9 by a vector e induces a change of p(og) to 

= p ( c o )  - 

The volume of K* is changed to 

V(K*) + f s . - ,  (e'w)P-"-l(c~176 

n + 1 f (8,(.o)2p_n_2((.o)dS(a)) 
+ - - - ~  so-' 

+ o(1512) 

For * ~ int K, p(o) > 0. The polar equation of the boundary of K* for the origin 
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* is r(o9) = p-1(o9). It follows that K*, V(K,) and f,(K) are continuous functions 

of K and , ,  f o r ,  ~ int K. Since f,(K) and V(K*) tend to oo a s ,  approaches the 

boundary of K, the infima of the functions in in tK are also the infima on a 

compact subset of i n tK  and are minima. 

The p o i n t ,  is stationary for V(K*) if 

f s  co)p-"- 1(o9) dS (co) = 0 for all 8, 
n - 1  

and, since the second order term of V~ is positive, the critical point is a unique 

minimum. The point �9 is stationary if and only if the moments of a homogeneous 

mass distribution throughout K* vanish for all axes through , :  the minimum 

occurs at the centroid of K*. 

The following geometric fact is an immediate consequence of the proof: 

COROLLARY. 1. In the interior of any proper convex body K, there is a unique 

point * which is the center of gravity of the corresponding polar body K*. 

2. LEMMA 2. The function f ( K ) = m i n , ~ i , t r f , ( K )  has a minimum both in 

~f~, and in 6e,. 
The distance and support functions for the origin �9 are positive, continuous 

functions of * ~ in tK.  Hence, K* is a continuous function of (K,,)  on an ap- 

propriate subspace of ~ n  • En and so are V(K*) and f ,  (K). By construction, the 

function f (K) is lower semicontinuous (in fact, because ofJ(K)=fg~r , ) (K) ,  

J(K) can be shown to be continuous). 

There exists a sequence of proper convex bodies Kj such that 

l imf(Kj)  = infr  ~ ~r.f(K). 

By a theorem of F. John [5 Th. II1], any set M in E" is contained in some ellip- 

soid, and a concentric and homothetic image in ratio 1/n of that ellipsoid is con- 

tained in conv M. This implies that any proper convex body inE ~ has an affine image 

which contains the unit ball of a fixed origin and is contained in the spherical ball 

of radius n about that origin. Since both the centroid and f ,  are affine invariants, 

f is affinely invariant and we may assume that the Kj contain the unit sphere 

S"-1 about the origin of the coordinates and are contained in n S"-1. By the 

Blaschke convergence theorem, a subsequence of the Kj converges to a convex 

set K o which is bounded (contained in n S"-1) and proper (containing S n- 1). 

Hence, Ko e f ,  and l imf(Kj) = f(Ko) by the Weierstrass theorem in .r 
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The same argument holds for symmetric bodies; by Lemma 1 , f (K)  =fc(K) for 

a symmetric body K of center c. 

3. The following construction is the basis of the proof of the main theorem. 

Let P be a simplicial polytope of vertices al,  ..., aN. We put the origin at �9 and 

identify a t and the vector .a  i. The star S (at) of a vertex a~ is the union of all faces 

of P having at as a vertex. For an (n - D-face Fj of S(a~), let f j  be the vector 

product of the vectors of the vertices # a i of F i. (The vector product of n - 1 

vectors vl, " ' , v , - i  in R" is the unique vector v for which 

v ' x  = det(vl ,  . . . , v , _ l , x )  

for an arbitrary vector x.) Then, 

1 
V(conv (, ,  S(ai) ) = n--).- a i �9 Y-'/i, (Fi ~ S(ai)) 

if the sign of the f j  is derived from the positive orientation of the simplicial complex 

P derived from that of E". 

Let P~ be the convex set which is the intersection of the closed halfspaces 

containing P defined by all (n - 1)-faces of P that do not belong to S(a~). For a 

point x in the intersection of Pi and the support hyperplane rc of P of equation 

( x  - at)" ~ZJ) = O, (F i E S(a,)) 

we put 

P'  --- conv (al,  ..., a t_ 1, x, at+ 1, "", aN). 

Then, 

V(P) = V(P'). 

In fact, consider P as the union of C = conv( , ,S(a i )  ) and a remainder set. The 

polytope P '  is the union of the same remainder set and the convex closure C' of x 

and those (n - 1)-faces of C that do not contain a i (i.e., the convex closure of x 

and the star of �9 in C). The condition on x assures that V(C) = V(C'). 

If  Q is a crosspolytope of center �9 and Q' is obtained by replacing two vertices 

ai, - a i  by points x, - x  according to our construction, then Q' is an affine image 

of Q in a linear map centered at �9 and f , (Q ' )  --f , (Q).  

4. We are now able to prove the main result. 

THEOREM. The minimum o f f ( K )  in ~f. is attained for the crossbody. 

We shall denote by at* the face of the polytope P* situated in the hyperplane 
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a/*. For P ~ ~ , ,  we must consider only the case in which , is the center. The 

following lemma is true for S,'~. but not for X , .  

LEMMA 3. For every symmetric, simplicial polytope, the central projection 

of the star of some vertex into the unit sphere of center * is contained in some 

closed hemisphere. 

The lemma is true for the crossbody; in that case, the central projection of 

every star is a closed hemisphere. 

For every other symmetric, simplicial polytope P, the star of some point a i 

must contain more than 2(n - 1) vertices aj (j # i). Since S(aj) and S ( -  aj) 

= - S  (a j) cannot intersect in relatively interior points, some S(aj) must be 

contained in a closed hemisphere. In fact, S(a~) is in some closed wedge of angle 

< n whose edge is the line ( a i , - a i ) ,  since otherwise, only 2(n - 1) such wedges 

could be accomodated about the axis (a~,-  ai). 

We assume now that the projection of S(a3 is contained in a closed hemisphere 

or that S(a ) is in a closed halfspace H whose boundary contains , .  By a linear 

transformation that preserves H, a i can be mapped into the normal to the boundary 

of H. The outer normals to the faces of P* adjacent to a* all point into H. This 

means that all angles between a* and any adjacent (n - 1)-face are __< rc/2. 

In the following, we shall discuss replacing ai by x. It will be understood that 

at the same time, we will replace -a~ by - x .  

i) We assume first that some angles are < n/2. If  z* Ca~, any point x cor- 

responding to a hyperplane x* through z* that separates �9 from a~* generates a 

P' with V(P'*) < V(P*) since P'* c P*. By construction, P'  is symmetric simpli- 

cial: f(P) is not minimal. 

If n*Ea*, consider any x* through 7r* and the corresponding symmetric 

simplicial body P'*, the intersection of the halfspaces containing �9 of x*, ( -x )* ,  

and the duals of the remaining vertices of P. If  V(P'*) < V(P*), f(P) is not 

minimal. Otherwise, let a be the reflection in the hyperplane a~ Since rc*~ ax*, 

we have ax~ re, and ax will be admissable provided that the angle of a ' a n d  x* 

is sufficiently small. Let P" be the body defined by ax and - ax. Then, 

a((P* I P"*) t~ H) = (P'* I P*) ~ H, 

a((P* \ P'*) c~ H) = (P"* \ P*) ~ n. 

In fact, the two sets involved in any of the inclusions intersect on a*; those of the 

first inclusion also intersect on x* and those of the second inclusion on ax*. 
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The sets at the right hand sides are also bounded by faces of P*, the sets at the 

left hand sides by images under er of these faces. The inclusions follow since the 

interior angles that are reflected are > zc/2. By symmetry, similar inclusions hold 

for - H .  Since not all angles are z/2, both inclusions cannot be equalities and 

V(P'*) > V(P*) implies V(P"*) < V(P*). 
ii) If  all angles are z/2, then P* is a right prism and P the suspension of an 

(n - 1)-dimensional symmetric, simplicial body Q with 

V(P)V(P*) = __4 V(Q)V(Q*), 
n 

where Q* is constructed in the boundary hyperplane of H. The previous arguments 

applied to Q will yield a polytope Q' with f(Q') < f(Q), unless Q is the (n - 2)- 

fold, and P the ( n -  1)-fold suspension of a segment, i.e., unless P is a 

crosspolytope. 

In all cases considered here, the number N' of vertices of P'  is not greater 

than the number N of vertices of P. The process can be repeated unless P'  is 

either a crosspolytope or is not simplicial. 

Let P be a symmetric polytope that is not simplicial and that is not the union of 

conv S (ai) and conv S ( -  ai) for all i (i.e., P is not a combinatorial cube.) We 

choose a pair of vertices (ai, - ai) and replace them by (y, - y) where y is close to 

a~ on the ray , a  i in the exterior of P'. Then S(y) is simplicial in the resulting 

polytope P'. The construction of Section 3 can be applied to P'. The maximal 

distance of x from y for which S(x) remains simplicial depends, by Section 3, on 

the geometry of P~ n - PI and also, in a term tending to zero in a continuous way 

for y -4 a, on * ai, on the position of z~. This means that for y close to a,, there 

exists 6 > 0 for which we may find an x such that for the corresponding P" we have 

f(P") = f , (P")  < f , ( P ' )  - 8. 

In view of the continuity of V and , ,  y can be chosen so that f , (P ' )  < f ,(P)+ 6/2. 
Hence, f (P")<f(P) and P" can be assumed to be simplicial and to have the 

same number of vertices as P. 

Starting from a given simplicial polytope P, we obtain a (possibly transfinite) 

sequence on which f is strictly decreasing and N is decreasing. Hence, the process 

must terminate in a crosspolytope Q (or its dual, the parallel body). 

Since the simplicial polytopes are dense in all polytopes, there exists a sequence 

of simplicial polytopes Ps for which 
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l imf(Pj)  = infp ~ s,,f(P). 

By the preceding, f ( P j ) > / ( Q ) .  Hence, we obtain the assertion of the theorem. 

In addition, we have seen that the minimum o f f (K)  on the polytopes is attained 

only for crossbody-parallel body. 

Let P be the metric space of affine equivalence classes of convex bodies in E n [7]. 

Then we know that f induces  a function f on P that has a unique minimum on the 

class of crossbodies for all classes of simplicial polytopes. Any convex body K can 

be approximated arbitrarily closely by simplicial polytopes. If  K is not a polytope, 

the classes of its approximating simplicial polytopes cannot be arbitrarily close 

to the class of the crosspolytope in P and hence, the lower semicontinuous function 

f (K)  cannot have a minimum for K. As a consequence, we have the complement 

to the theorem: 

The minimum o f f (K)  in 6~ is attained only for crossbody and parallel body. 

5. Finally, we discuss briefly the situation for g(',. The natural conjecture here 

is that the minimum of f ( K )  takes place only for the simplex, the simplicial 

polytope of a minimal number of vertices. The dual of a simplex is a simplex and 

�9 = g(S) implies �9 -- 0(S*) for every simplex S. 

The proof of Section 4 does not carry over since Lemma 3 does not hold. One 

therefore has to discuss separately the polytopes for which �9 ~ int conv S(a~) for 

all vertices a t. One shows easily that for polytopes that are the convex closure of 

the star of one point, this can happen only for the simplex. If P ~ conv S(a i) for 

all i and n = 3, then there exist vertices a j, a k E S(ai) for which S(a~)n S(aj) 

t~ S(ak) consists of at most two points. It follows without difficulty that for n = 3, 

the only polyhedra for which the proof of Section 4 cannot be imitated are the 

convex closures of three pairwise skew segments. In this case,f (K) can be computed 

explicitly by a lengthy determinant formula and might be shown to be not minimal. 

For n > 3, the morphology of the exceptional polytopes defies classification and 

a new approach must be found. 
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